Estudos em neurociência sugerem que é preciso saber a tabuada; debate hoje é se ela deve ou não ser decorada
Fernando Real
HÉLIO SCHWARTSMAN
ARTICULISTA DA FOLHA
ARTICULISTA DA FOLHA
Crianças precisam ou não saber a tabuada de multiplicação? A resposta curta, de acordo com a melhor ciência disponível, é "sim", mas isso não significa que a enorme controvérsia em torno do tema tenha sido resolvida.
Essa é mais uma daquelas polêmicas fundadoras, que divide educadores em linhas pedagógicas com nítidos contornos ideológicos.
De um lado estão os defensores de um ensino mais tradicional, para os quais a tabuada precisa ser conhecida "de cor e salteado"
"Sim, a tabuada deve ser ensinada, e as crianças devem conhecê-la de cor", afirma o professor de psicologia da USP Fernando Capovilla.
"Se o automatismo na memória de recitação falhar, entra o raciocínio. Se não falhar, os recursos centrais de atenção e memória podem se dedicar exclusivamente à resolução do problema em pauta", acrescenta.
Do outro, vêm os proponentes da Educação progressista -no Brasil, mais conhecidos como construtivistas-, que, inspirados nos trabalhos de autores como Jean-Jacques Rousseau, John Dewey e Jean Piaget, advogam por um sistema que respeite o desenvolvimento cognitivo da criança.
"Seguindo os princípios construtivistas, temos que inverter o modo como se ensina tabuada", diz a professora de pedagogia da USP Silvia Colello.
"Explicando melhor, na Escola tradicional, as crianças primeiro aprendiam a tabuada e depois aplicavam em problemas estritamente Escolares que nem sempre faziam sentido para ela. Em uma perspectiva mais atual, entendo que as crianças devam compreender o princípio da multiplicação a partir de atividades lúdicas ou que sejam integradas aos contextos/necessidades da vida cotidiana", completa.
MUNDO REAL
Nos anos 80 e 90, os construtivistas pareciam estar vencendo a guerra. Nos EUA, por exemplo, o poderoso Conselho Nacional de professores de Matemática (NCTM) lançou várias recomendações para que as Escolas tirassem a ênfase da competência para efetuar cálculos e a colocassem na compreensão dos conceitos e na capacidade de resolver problemas do "mundo real".
A ideia era que, com a crescente popularização de calculadoras e computadores, fazer contas se tornara uma tarefa puramente mecânica sem maior interesse.
A reação não tardou. professores universitários se uniram a "pais preocupados" para queixar-se do baixo nível de conhecimento com que os alunos saíam do ensino médio e defender a volta a um ensino mais tradicional. As batalhas entre os dois lados ficaram conhecidas como "math wars" ().
Para tentar resolver a celeuma, em 2006, o então presidente George W. Bush convocou uma comissão de notáveis e os incumbiu de reunir a melhor ciência disponível e fazer recomendações.
Em 2008, o comitê saiu-se com uma conclusão temperada pela política na qual afirmava que "a compreensão dos conceitos, a fluência computacional e a capacidade de resolver problemas são igualmente importantes e reforçam uns aos outros" e pedia o fim da guerra.
Hoje, com os ânimos serenados e a ciência mais bem digerida, é possível avançar um pouco mais. Como explica o psicólogo e educador João Batista Oliveira, outro defensor da tabuada decorada, "o problema é que a memória humana é limitada".
A memória de trabalho de um adulto, isto é, aquela que ele utiliza na resolução de problemas complexos (não a que armazena para manter por períodos mais longos), comporta em média apenas uns sete elementos. No caso de crianças, essa capacidade é ainda menor. Se ela é onerada com sub-rotinas para fazer contas simples, perde-se eficiência cognitiva.
VERBOS DE AÇÃO
Numa linha um pouco diferente e que não insiste na decoreba vai a consultora educacional e pesquisadora em neurociência Elvira Souza Lima. Para ela, os elementos da matemática, incluindo a tabuada, devem ser aprendidos com suporte linguístico, especialmente de verbos de ação, que resultam numa organização mais sólida dos conceitos.
A ideia é que a criança seja exposta a frases como "peguei 4 vezes 9 unidades de banana e fiquei com um total de 36 bananas" ou "andei 9 vezes a distância de 4 metros da porta da casa ao portão do jardim. Assim andei 36 metros no total".
"Num primeiro momento, esses raciocínios mobilizam a memória de trabalho, mas, depois de muita repetição, eles [os elementos] acabam se fixando e podem ser utilizados prontamente".
A vantagem, segundo Lima, é que o aluno, além de acabar aprendendo a tabuada, também se assenhora do princípio multiplicativo e de suas propriedades, que são básicos para a matemática.
"Em resumo, a criança que aprende o princípio multiplicativo terá mais recursos, principalmente para aprendizagens posteriores, do que a que só decora a tabuada", diz a pesquisadora.
Fonte: Folha de S. Paulo (SP)
_________________
Nenhum comentário:
Postar um comentário